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Abstract

To assess the effects of neurofeedback on brain electrophysiology and to determine how biofeedback works, power spectral density
(PSD) and approximate entropy (ApEn) analyses are applied to the EEGs of six patients with intractable epilepsy who received neuro-
feedback training. After sessions of treatment, the EEG sensorimotor rhythm to theta PSD ratio calculated from the C4 electrode site
becomes larger than that before the treatment, which is consistent with the biofeedback protocol. The ApEn over 16-channel EEG
recordings all increase to different degrees. Larger increases occur in channels located near the training position (C4). All these results
suggest that these EEG measurements are new criteria that can be used to evaluate the effect of neurofeedback.
© 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in

China Press. All rights reserved.

Keywords: Biofeedback; Electroencephalogram; Epilepsy; Power spectral density; Approximate entropy

1. Introduction

Epilepsy is a common serious neurological disorder that
is characterized by recurrent seizures [1]. Approximately
1% of the world’s population suffers from this chronic dis-
ease. For many epilepsy patients, seizures cannot be con-
trolled sufficiently by antiepileptic pharmacologic
therapy, and surgical treatment may be possible in only a
small number of cases. About 20-30% of patients continue
to have seizures that are drug-resistant and intractable to
current medical and/or surgical therapies [2]. For such
patients, a behavioral treatment — neurofeedback (also
called EEG biofeedback) is a good choice, based on an
operant conditioned reflex. Many studies have shown that
neurobiofeedback is an effective therapy or adjuvant ther-
apy and can help not only in seizure control, but also has
the exciting potential of having a positive impact on both
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health and quality of life of epilepsy patients. For epilepsy
patients, neurofeedback is usually accomplished by train-
ing the brain to de-emphasize EEG rhythms which lead
to generation and propagation of seizures and to empha-
size EEG rhythms which make seizures less likely to occur
[3]. Various techniques of EEG biofeedback have been
used in epileptic patients, including slow cortical potentials
(SCPs) and sensorimotor rhythm (SMR) training [4]. Feed-
back of SCP, developed by Birbaumer et al. [5] and Rock-
stroh et al. [6], 1s a relatively new method and has proved
effective in reducing seizure frequency [7], but not all
patients are capable of regulating their SCPs. There are
more studies assessing SMR self-regulation than self-regu-
lation of SCPs [4].

The SMR (1215 Hz) over the sensorimotor cortex, ini-
tially described in cats, is neurophysiologically associated
with alert and motionless processes [4]. One change in the
EEG of epilepsy patients is that SMR production is
decreased while theta (4-9 Hz) production is increased
compared with normal subjects. Therefore, SMR neuro-

1002-0071/$ - see front matter © 2009 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited

and Science in China Press. All rights reserved.
doi:10.1016/j.pnsc.2009.03.010



1510 L. Zhao et al. | Progress in Natural Science 19 (2009) 1509-1514

feedback training is always done by enhancing the produc-
tion of 12-15 Hz wave activity and inhibiting the produc-
tion of 4-9 Hz wave activity. Sterman and Friar first
applied SMR training to patients with epilepsy, in the early
1970s [8]. They produced numerous original reports on the
effects of neurofeedback training. After this pioneering
research, further work was carried out by Sterman,
McDonald and Finley [9-11]. In 1978, Kuhlman confirmed
that reduction in seizure frequency was due to biofeedback,
and not to other possibilities such as placebo [12]. In 1981,
Lubar et al. reported the first double-blind ABA (A = sup-
press 3-8 Hz slow EEG activity, B = enhance 3-8 Hz slow
EEG activity) crossover study on eight epilepsy patients
[13). Thus, over the course of many years of study, the
effectiveness of the SMR technique has been justified by
physiological data and supported by successful clinical tri-
als [4]).

Although a large number of neurofeedback studies have
been published, there are very few systematic investigations
exploring the variations in different EEG measurements
during biofeedback in epileptic patients, including linear
measurement and nonlinear measurement. However, such
information is important to assess the overall effects of bio-
feedback training [14]. In this study, patients with intracta-
ble epilepsy participated in sessions of neurofeedback
training, and then the variations in different EEG measures
were calculated. Consequently, with the changes in these
electrophysiological measurements, we could evaluate the
efficacy of neurofeedback from a new perspective other
than the reduction of seizure frequency, which also could
provide convincing support for the therapeutic outcome.
Second, from the changes of these measures before and
after biofeedback training, we could determine how bio-
feedback works.

2. Materials and methods
2.1. Subjects

Six patients with intractable epilepsy participated in this
study, three males and three females, ranging in age from
14 to 60 years. The six patients were suffering from a wide
range of disorders, including grand mal epilepsy, minor
epilepsy, myoclonic epilepsy and psychomotor epilepsy.
Table 1 presents a description of the subjects.

Table 1

Summary of the patients.

Patient No. Gender Age Duration of training Number of EEG
(months) records

1 Male 43 4 6

2 Female 23 18 8

3 Male 28 4 5

4 Female 60 3 3

S Female 14 3 3

6 Male 23 8 4

2.2. Experimental design and EEG data acquisition

The apparatus used in the biofeedback training was Pro-
Comp Infiniti produced by Thought Technology Ltd. It
comprised an 8-channel encoder with 14-bit resolution,
which could record a variety of bio-potential signals. In
our study, we applied 1-channel EEG to biofeedback
training.

The patient was comfortably seated with head and arms
at rest. Electroencephalic activity was recorded with one
scalp electrode placed on the position C4 (International
10-20 system) against a reference electrode linked to ear
lobe A2. The patient was trained to increase the production
of SMR (12-15 Hz) activity and decrease the production of
theta (4-9 Hz) wave activity. Biofeedback training con-
sisted of a visual game on the computer screen and audio
at the same time. The EEG signal controlled the status of
the game and the audio in real-time. The game and/or
the audio were active only when the SMR activity was
higher than the preset threshold and the theta activity
was lower than another preset threshold, which constituted
the reward procedure. The patient was told to be simply
relaxed and keep the game and the audio active.

All patients took part in 2-3 training sessions per week.
Each training session consisted of the following sequence:
about 3-5 min of baseline recording without feedback, in
order to establish the thresholds; then there was about
30-45 min of feedback training including different games
at different difficulty levels. The training time could be
adjusted according to the status of the patient. The total
training durations of the patients (in months) are shown
in Table 1.

To compare the effects of the treatment using EEG anal-
ysis, EEG recordings for evaluation of training effects were
acquired on another 16-channel Video-EEG system (WeiSi
Medical Apparatus Co., Ltd), with a sampling frequency at
128 Hz. The 16 scalp locations were Fpl, Fp2, F3, F4, C3,
C4, P3, P4, O1, 02, F7, F8, T3, T4, TS and T6 [15]. The
number of EEG recordings for each patient is also listed
in Table 1. The 16-channel EEG signals were usually
recorded before a subject received biofeedback training
and after about 10 training sessions; others were acquired
at different times according to the length of treatment.

2.3. EEG measurements

In this study, the EEG linear measurement (PSD) and
nonlinear measurement (approximate entropy (ApEn))
were used to evaluate the differences in EEG signals before
and after treatment.

2.3.1. FEG PSD

The EEG power spectrum can be estimated by the
model-based method, which consists of two steps. First,
the parameters of the model are estimated from a given
data sequence. Then, the PSD is estimated from these com-
puted parameters. Because the estimation of auto regres-
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sive (AR) parameters can be done easily by solving linear
equations, the AR method is the most frequently used
parametric method [16]. In this study, PSD was calculated
using the AR model by Burg’s method. This method fits an
AR model to the input data by minimizing (least squares)
the forward and backward predictive errors, while con-
straining the AR parameters to satisfy the Levinson-Dur-
bin recursion. A brief description of this method is given
by Proakis and Manalakis [17].

2.3.2. Approximate entropy

Nonlinear dynamic approaches to studying the bio-
potential signals have recently come to the fore. ApEn
[18], as a nonlinear measurement, can be used as a criterion
of the complexity of a signal. The more regular the signal,
the smaller its ApEn. Let the original EEG data be

(x(n)) = x(1),x(2), ..., x(NV)

where N is the total number of data points. Two parame-
ters must be specified before ApEn can be computed: m,
the embedding dimension of the vector to be formed, and
r, a threshold that is, in effect, a noise filter.

(1) Form m-vectors X{(i) defined by:

X)) = [x(@),x(i+1),...,x(i + m = 1)],
i=1,...,.N-m+1
(2) Define the distance between X() and X()),

d[X(i), X(j)], as the maximum absolute difference
between their corresponding scalar elements, i.e.,

dX (), X()] = max (i + k) —x( +K)]

(3) For a given X{(i), find the number of 4X(i), X(j)]
(G=1,..., N—m+ 1) that is <r and the ratio of this
number to the total number of m-vectors
(N—m+1),

Let N™(i) = number of d[X(i), X(j)] < r, then
C'(iy=N"(i)/{(N-m+1), i=1,...,N-m+1

(4) Take the natural logarithm of each C (i) and average
it over i:

1 N—m+1

> InCy)

i=1

¢m(r):N—m+l

(5) Increase the dimension to m + 1. Repeat steps (1)~(4)
and find C™' (i), ¢""'(r).
(6) Theoretically, the approximate entropy is defined as

ApEn(m,r) = lim [¢"(r) — ¢ (r)]

In practice, the number of data points N is finite, and the
result obtained through the preceding steps is an estimate
of ApEn, which is denoted by

ApEn(ma ry N) = ¢m<r) - ¢m+l

Goldberger showed [19] that values of r from 0.1 to 0.25
times the SDx, where SDx is the standard deviation of the
original data (x(n)), together with a value of m equal to 2,
produced a good statistical validity of ApEn(m, r, N).

3. Results

After a number of biofeedback training sessions, all six
patients exhibited a reduction in seizure frequency, and the
seizure symptoms were all significantly relieved. The PSD
and ApEn analyses that were used to evaluate the changes
in EEG signals before and after treatment are detailed
below.

3.1. Changes in PSD after biofeedback training

3.1.1. The order of the AR method

One of the most important aspects of the AR method is
the selection of the order p. Much work has been done by
various researchers on this problem. In this work, the order
of the AR method was estimated under the evaluation
methods of the Akaike Information Criterion (AIC), and
the Bayesian Information Criterion (BIC) [20]. One EEG
record was randomly selected to calculate the AIC and
BIC with p. When the AIC and BIC values all reached a
minimum and changed very little, the optimal value of p
was chosen, and it was 13.

3.1.2. Changes in PSD after biofeedback training

For all six patients, 16-channel EEG signals were
recorded before and after different sessions of neurofeed-
back training as described in Section 2.2. To study the
changes in PSD before and after treatment, the PSDs were
calculated for each of the signals using Burg’s method (AR
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Fig. 1. PSD changes of patient No. 4 before and after biofeedback.
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model). Fig. 1 shows the PSDs of patient No. 4 calculated
from electrode C4, which is identical to the biofeedback
training site. In Fig. 1, EEG signal No. 1 was recorded
before this patient received neurofeedback treatment, and
signals No. 2 and No. 3 were recorded at different times
in the therapeutic period.

It can be observed from Fig. 1 that, as expected, the rel-
ative intensity of theta activity (4-9 Hz) after training (sig-
nal No. 2-No. 3) became weaker than that before training
(signal No. 1), while the SMR activity (12-15 Hz) was the
opposite. The PSD ratio of SMR to theta changed from
5.5% to 23.9% and to 35.1%. This result can be supported
by the therapeutic protocol: increasing the SMR activity
and decreasing the theta activity. Other patients showed
similar results.

3.2. Changes in ApEn after biofeedback

3.2.1. The effect of data length on ApEn

Usually, long data sequences are needed to accurately
estimate nonlinear parameters. How long should the data
be so that robust estimates can be obtained for this EEG
measurement? Three records of stationary EEG signals
were randomly chosen to resolve this question. Each record
was divided into segments with different lengths: ranging
from 256 points to 6400 points by 256-point steps, with
the sampling time of each segment varying from 2 to
50s. The ApEn of each segment was calculated and the
results are shown in Fig. 2.

From Fig. 2, we can see that the ApEn varied very littie
when the data sample time reached 30 s. The standard devi-
ations of three EEG records were 0.0024, 0.0045 and
0.0034 (from bottom to top) when the data length N varied
from 3840 (30 s) points to 6400 (50 s) points. So we selected
30 s EEG data as our computational length, which con-
tained 3840 points. Other parameters used for the ApEn
calculation were as follows: m taken as 2 and r as 0.2 SDx.

3.2.2. Changes in ApEn after biofeedback

During the course of biofeedback treatment, each
patient had a different number of EEG records. Each
record had 16-channel signals, and each channel acquired
about Smin of data. For ApEn computation, the EEG
data of each channel were divided into consecutive 30 s seg-
ments with an overlap of 10s. ApEn analysis was applied
to all segments. Then we averaged the calculated ApEn
over all segments for each record of each channel. The
results calculated from electrode C4 are shown in Table 2.

In Table 2, the first EEG records of all patients were
acquired before the subjects received biofeedback training,
and the second records were made after about 10 training
sessions when the training duration was about one month.
Others were acquired at different times over the treatment
duration. From Table 2, we can see that the nonlinear mea-
surements, ApEn, of the six patients were all increased
compared with the first record (before training) at about
10 sessions from the beginning of the treatment. For exam-
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Fig. 2. Values of ApEn changed with different data length.

Table 2

ApEn calculated from the C4 site for each record of each patient.
Record Patient  Patient  Patient  Patient Patient  Patient
No. 1 2 3 4 5 6

1 1.058 0.746 1.190 1.060 0.948 1.079
2 1.157 1.092 1.880 1.736 1.328 1.699
3 1.128 0.880 1.436 1.189 1.425 1.167
4 1.735 0.942 1.759 - - 1.180
5 1.194 1.064 1.774 - - -

6 1.102 0.770 - ~ - -

7 - 1.142 - - - -

8 - 0.995 - - - -

ple, in case 2, the ApEn increased from 0.746 to 1.092 after
about 10 sessions, while in case 6, the ApEn increased from
1.079 to 1.699. With treatment continuing, all ApEn values
increased from those before treatment to some extent,
although with some fluctuation.

The cortex is more active and more chaotic under nor-
mal physiological conditions, while in pathological condi-
tions, the cortex becomes inactive and EEG becomes less
random. The above result reveals that biofeedback training
can increase the degree of random electrical activity of the
cortical neuron population under pathological conditions,
so that the symptoms of epilepsy are improved and seizures
alleviated. Thus, the ApEn criterion can be used to evalu-
ate the effect of EEG biofeedback. It may give an indica-
tion of the electrophysiologic basis of EEG biofeedback.

3.2.3. Changes in ApEn at 16 scalp locations

To investigate the trend of ApEn at the 16 scalp loca-
tions after treatment, the growth rates of ApEn over 16
electrode sites after biofeedback training compared with
the ApEn before treatment were calculated. The average
growth rate of the six patients overall is shown in Table
3 with the growth rates arranged in descending order.

From Table 3, we can see that the channels with a
growth rate of ApEn greater than 20% were C4, P4, O2,
F4, F8, FP1 and FP2. In order to observe the change in
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’/l;i?rzge growth rates of ApEn calculated from the 16-channel EEG of six patients.
Location C4 P4 02 F4 F8 FPI1 FpP2 F3
Average growth rate (%) 33.02¢ 30.10° 25.73° 25.09* 23.04° 22.69° 19.65° 18.40°
P3 T4 C3 F7 01 T6 T3 TS
Average growth rate (%) 15.60 15.18 12.11° 8.00 4.73 4.66 1.22 0.85
2 p <001,
® p < 0.05.

Fig. 3. Changes in ApEn over 16 electrode sites (blackened are locations
with growth rates higher than 20%).

ApEn over the 16 electrode sites, all these locations are
blackened on the Head Model map in Fig. 3.

Paired f-tests were conducted in order to validate
whether there was a significant difference between the
paired values before and after treatment over the 16 elec-
trode sites. The statistical results showed that there was a
highly significant difference (p <0.01) at sites C4, P4, O2,
F4, F8 and FPI, and a significant difference (p < 0.05) at
sites FP2, F3 and C3, while others showed no difference.

After a number of training sessions, the seizure symp-
toms of patients were all relieved significantly. From
Fig. 3 and the #-test results, we can presume that the ApEn
calculated from the EEG recordings all increased synchro-
nously by different degrees: a larger increase occurred
mainly in channels located near the training position (C4)
and in the same hemisphere as C4. This result indicates that
biofeedback training can work effectively, mainly surround-
ing the training position. This may help in making the
choice of training position in patients with different foci.

4. Discussion

Neurofeedback as a behavioral therapy approach, based
on self-modulation of the EEG, has proved effective in the
treatment of epilepsy. The goal of this study was to explore
the variations of different EEG measurements, including a
linear measurement and nonlinear measurement before and

after biofeedback training, which are important to assess
the effects of neurofeedback and to determine the mecha-
nism of biofeedback.

In this study, six patients with drug-resistant epilepsy
were trained to increase 12-15 Hz EEG activity and to
decrease 4-9 Hz activity. After a number of sessions of
treatment, the seizure symptoms of all the patients were
improved, and, at the same time, the EEG PSD of theta
calculated from the C4 electrode site became weaker, while
the SMR was the opposite, which is consistent with the bio-
feedback protocol. The change in the nonlinear measure-
ment, ApEn, was also explored. The results demonstrated
that all ApEn increased at about 10 sessions after the
beginning of treatment compared with those of the EEG
recordings before training. The ApEn over the 16-channel
EEG recordings all increased, but by different degrees.
Greater increases occurred in channels located near the
training position (C4) and in the same hemisphere as C4.
All these results suggest that EEG biofeedback training
helps the electrophysiological activity of the cortical neu-
ron population to become more chaotic and, thus, alleviate
the symptoms of epilepsy. ApEn is a criterion that can be
used to evaluate the effect of EEG biofeedback.

Further work can be done as follows:

(1) In our study, a relatively small number of patients
were studied, and no control was involved. A larger
patient pool should be investigated in future studies,
and a control group should be included.

(2) In the future, the nonlinear measurements, such as
ApEn discussed above and fractal dimensions could
be incorporated into the biofeedback setting, which
mainly consists of frequency parameters at present.
Further work should be done to incorporate the
above-mentioned nonlinear measurements into
online apparatus: how to accelerate the computation
speed and how to select the appropriate parameters
should first be studied carefully.
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